Prediction of MHC class I binding peptides using probability distribution functions

نویسندگان

  • Sudhir Singh Soam
  • Feroz Khan
  • Bharat Bhasker
  • Bhartendu Nath Mishra
چکیده

Binding of peptides to specific Major Histo-compatibility Complex (MHC) molecule is important for understanding immunity and has applications to vaccine discovery and design of immunotherapy. Artificial neural networks (ANN) are widely used by predictions tools to classify the peptides as binders or non-binders (BNB). However, the number of known binders to a specific MHC molecule is limited in many cases, which poses a computational challenge for prediction of BNB and hence, needs improvement in learning of ANN. Here, we describe, the application of probability distribution functions to initialize the weights and biases of the artificial neural network in order to predict HLA-A*0201 binders and non-binders. The 10-fold cross validation has been used to validate the results. It is evident from the results that the A(ROC) for 90% of test cases for Weibull, Uniform and Rayleigh distributions is in the range 0.90-1.0. Further, the standard deviation for AROC was minimum for Weibull distribution, and may be used to train the artificial neural network for HLA-A*0201 MHC Class-I binders and non-binders prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیشرفت های جدید در شناخت اسپوندیلوآرتروپاتی ها

In last few years, numerous observations and studies on pathogenesis of spondyloarthropathies have been published and an animal model which confirms the associations of new information is now available. Bacteria which are responsible for reactive arthritis all can remain in the cells for long time. Molecules of class I MHC are able to present the intracellular peptides to immune system. B27 mol...

متن کامل

Prediction of MHC class I binding peptides using profile motifs.

Peptides that bind to a given major histocompatibility complex (MHC) molecule share sequence similarity. Therefore, a position specific scoring matrix (PSSM) or profile derived from a set of peptides known to bind to a specific MHC molecule would be a suitable predictor of whether other peptides might bind, thus anticipating possible T-cell epitopes within a protein. In this approach, the bindi...

متن کامل

Predicting Protein-Peptide Binding Affinity by Learning Peptide-Peptide Distance Functions

Many important cellular response mechanisms are activated when a peptide binds to an appropriate receptor. In the immune system, the recognition of pathogen peptides begins when they bind to cell membrane Major Histocompatibility Complexes (MHCs). MHC proteins then carry these peptides to the cell surface in order to allow the activation of cytotoxic T-cells. The MHC binding cleft is highly pol...

متن کامل

Prediction of MHC Binding Peptides and Antigenic Peptides from Ascaris lumbricoides

The parasitic disease Acariasis is the major concern because of its morbidity and mortality issue. In this investigation, we predicted the binding peptides of the MHC class I and MHC class II by Position Specific Scoring Matrices (PSSM) and Support Vector Machine (SVM) algorithms. We predicted the binding affinity of Cytochrome c oxidase subunit 2 (mitochondrion) having a 232 amino acids long r...

متن کامل

POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties

MOTIVATION Both modeling of antigen-processing pathway including major histocompatibility complex (MHC) binding and immunogenicity prediction of those MHC-binding peptides are essential to develop a computer-aided system of peptide-based vaccine design that is one goal of immunoinformatics. Numerous studies have dealt with modeling the immunogenic pathway but not the intractable problem of immu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009